skip to main content


Search for: All records

Creators/Authors contains: "Sheets, Elizabeth A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many animals, the germline differentiates early in embryogenesis, so only mutations that accumulate in germ cells are inherited by offspring. Exceptions to this developmental process may indicate other mechanisms have evolved to limit the effects of deleterious mutation accumulation. Stony corals are animals that can live for hundreds of years and have been thought to produce gametes from somatic tissue. To clarify conflicting evidence about germline-soma distinction in corals, we sequenced high coverage, full genomes with technical replicates for parent coral branches and their sperm pools. We identified post-embryonic single nucleotide variants (SNVs) unique to each parent branch, then checked if each SNV was shared by the respective sperm pool. Twenty-six per cent of post-embryonic SNVs were shared by the sperm and 74% were not. We also identified germline SNVs, those that were present in the sperm but not in the parent. These data suggest that self-renewing stem cells differentiate into germ and soma throughout the adult life of the colony, with SNV rates and patterns differing markedly in stem, soma and germ lineages. In addition to informing the evolution of germlines in metazoans, these insights inform how corals may generate adaptive diversity necessary in the face of global climate change.

     
    more » « less
  2. Reef-building coral species are experiencing an unprecedented decline owing to increasing frequency and intensity of marine heatwaves and associated bleaching-induced mortality. Closely related species from the Acropora hyacinthus species complex differ in heat tolerance and in their association with heat-tolerant symbionts. We used low-coverage full genome sequencing of 114 colonies monitored across the 2015 bleaching event in American Samoa to determine the genetic differences among four cryptic species (termed HA, HC, HD and HE) that have diverged in these species traits. Cryptic species differed strongly at thousands of single nucleotide polymorphisms across the genome which are enriched for amino acid changes in the bleaching-resistant species HE. In addition, HE also showed two particularly divergent regions with strong signals of differentiation. One approximately 220 kb locus, HES1, contained the majority of fixed differences in HE. A second locus, HES2, was fixed in HE but polymorphic in the other cryptic species. Surprisingly, non-HE individuals with HE-like haplotypes at HES2 were more likely to bleach. At both loci, HE showed particular sequence similarity to a congener, Acropora millepora . Overall, resilience to bleaching during the third global bleaching event was strongly structured by host cryptic species, buoyed by differences in symbiont associations between these species. 
    more » « less